CURRICULUM VITAE

Name : Dr. Nor Afifah Yahaya

Organisation : UNIVERSITI TEKNOLOGI MARA

Faculty/Unit : College of Engineering

Designation/Grade : DM 52

Office Number : 03-5543 6283

Fax Number :

Mobile Number : 019-2229954

Email Address : afifah@uitm.edu.my

QUALIFICATIONS

Academic Qualifications:

PhD in Environmental and	NAGAOKA UNIVERSITY OF TECHNOLOGY,
Renewable Energy	JAPAN
MSc in Mechanical Engineering	EHIME UNIVERSITY, JAPAN
B.ENG in Mechanical Engineering	EHIME UNIVERSITY, JAPAN

Professional Bodies:

The Institution of Engineers, Malaysia	member
Board of Engineers Malaysia	member
Energy Institute	member

CAREER HISTORY

No.	Year	Position	Institution/Organisation
1.	2004	Executive	MARUWA (M) SDN. BHD.
2.	2005-Present	Senior Lecturer	UNIVERSITI TEKNOLOGI
			MARA

PROFESSIONAL AFFILIATIONS/APPOINTMENTS

No.	Year	Position	Institution/Organisation
1.	2005	MEMBER	THE INSTITUTION OF ENGINEERS,
			MALAYSIA
2.	2005	MEMBER	BOARD OF ENGINEERS MALAYSIA
3.	2020	MEMBER	ENERGY INSTITUTE

RESEARCH PROFILE

Area of : Renewable Energy, Heat transfer

Expertise

ORCiD : https://orcid.org/0000-0002-0203-738X

Scopus : 55234260200

Author ID

Researcher: AAO-1388-2021

ID

H-index : 4

(Scopus)

Google : https://scholar.google.com/citations?view_op=list_works&hl=en&user=xEieisIA

Scholar <u>AAAJ</u>

RESEARCH GRANT SECURED

Project Title	Role	Source	Total Funding	Duration
			(RM)	
CHARACTERIZATION OF	LEADER	FRGS	90,200.00	2 .5 YEARS
PHOTOCURRENT				
CONVERSION EFFICIENCY OF				
DYE SENSITIZED SOLAR CELL				
USING MANGOSTEEN				
PERICARP AND HIBISCUS AS				
PHOTOSENSITIZER WITH				
ADVANCED LIGHT TRAPPING				
TECHNIQUE				
AUTOMOTIVE EXHAUST HEAT	MEMBER		32,000.00	3 YEARS
	MEMDED	EDCC	106 000 00	2 .5 YEARS
	MEMBER	LKOS	100,000.00	2.3 IEARS
`	MEMBED	EDGS	126 200 00	2 .5 YEARS
	MEMDEK	LKUS	120,200.00	2.3 IEARS
EFFICIENCY BIOPOLYMER				
	CHARACTERIZATION OF PHOTOCURRENT CONVERSION EFFICIENCY OF DYE SENSITIZED SOLAR CELL USING MANGOSTEEN PERICARP AND HIBISCUS AS PHOTOSENSITIZER WITH ADVANCED LIGHT TRAPPING TECHNIQUE	CHARACTERIZATION OF PHOTOCURRENT CONVERSION EFFICIENCY OF DYE SENSITIZED SOLAR CELL USING MANGOSTEEN PERICARP AND HIBISCUS AS PHOTOSENSITIZER WITH ADVANCED LIGHT TRAPPING TECHNIQUE AUTOMOTIVE EXHAUST HEAT RECOVERY USING THERMOELECTRIC GENERATORS CORRELATIONS BETWEEN PROCESSING PARAMETERS AND GRAPHENE FORMATION FROM VEGETABLE OILS UNDER SIMPLE STEP MICROWAVE ASSISTED ARC IN LIQUID METHOD FUNDAMENTAL INVESTIGATION OF HIGH	CHARACTERIZATION OF PHOTOCURRENT CONVERSION EFFICIENCY OF DYE SENSITIZED SOLAR CELL USING MANGOSTEEN PERICARP AND HIBISCUS AS PHOTOSENSITIZER WITH ADVANCED LIGHT TRAPPING TECHNIQUE AUTOMOTIVE EXHAUST HEAT RECOVERY USING THERMOELECTRIC GENERATORS CORRELATIONS BETWEEN PROCESSING PARAMETERS AND GRAPHENE FORMATION FROM VEGETABLE OILS UNDER SIMPLE STEP MICROWAVE ASSISTED ARC IN LIQUID METHOD FUNDAMENTAL INVESTIGATION OF HIGH	Project Title Role Role Role Role Role Role Role Ro

BASED THERMOELECTRIC		
MATERIALS AS WASTE HEAT		
ENERGY HARVESTER.		

POSTGRADUATE SUPERVISION

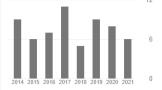
No.	Research Title	Institution	Year Enrolled	Year End
1.	KHADIJAH BINTI HAMZAH	UNIVERSITI	2017	2019
		TEKNOLOGI		
		MARA		
2.	MOHD ZAKUAN ZABRI	UNIVERSITI	2017	2019
		MALAYA		

INDEXED PUBLICATIONS

Year	Title	Publisher
2021	A Tri-Metallic (Mn–Co–Ti) Oxide Photoanode with	Russian Journal of Inorganic
	Improved Photo-Conversion Efficiency	Chemistry
2019	Experimental investigation on nanofluid as the	NaSMiNT 2019
	cooling medium in the evacuated tubes solar collector	
2018	Study on the extraction process and optical properties	Journal of Mechanical
	of mangosteen pericarp for Dye Sensitized Solar Cell	Engineering (JMechE)
	(DSSC) application	
2018	Effects of functionalized carbon nanofillers on the	Materials Chemistry and
	spectral selectivity behavior of aluminum	Physics
	nanocomposites for solar absorber applications	
2017	Comparative study of heat transfer and friction factor	Procedia engineering
	characteristics of nanofluids in rectangular channel	
2015	Energy harvesting from cooling tower by vertical axis	Jurnal Teknologi
	wind turbine (VAWT)	
2013	Optical design and optimization of periodic nanohole	Nagaoka University of
	structure for light trapping in thin film silicon solar	Technology
	cell	
2013	Characterization of light absorption in thin-film	Optics express
	silicon with periodic nanohole arrays	
2012	Light trapping potential of hexagonal array silicon	Advanced Materials Research
	nanohole structure for solar cell application	
2007	Integrating mechatronics engineering with	Research Management Institute
	enterpreneurship in outcome-based postgraduate	(RMI)
	education in Malaysia	

to

DR NOR AFIFAH YAHAYA 🗸


Unknown affiliation Verified email at uitm.edu.my ✓ FOLLOW

	TITLE								CITED BY	YEAR
	NA Yahay	a, N Yam	n of light abs ada, Y Kotaki, (5), 5924-5930		ilm silicon wi	th periodic n	anohole array	s	42	2013
	rectangu UK Ahma	ular cha d, M Hasi	nnel	transfer and frict va, B Rosnadiah 16	tion factor ch	aracteristics	of nanofluids	in	11	2017
	applicat NA Yahay	ion a, N Yam	otential of ho ada, T Nakaya s Research 512		silico n na noh	ole structure	for solar cell		8	2012
		ahman, N	IA Yahaya, R B	ling tower by ve ahsan, UK Ahmad	rtical axis wi	nd turbine (V	⁄AWT)		4	2015
	aluminu MZ Zabri,	m nano S Rozali,					behavior of		1	2018
	MA Manso	oor, K Ha	mzah, R Naeer	oxide Photoanod m, M Zubir, NA Yaha mistry 66 (6), 806-8	aya, FB Yusof, .		Conversion Eff	iciency		2021
	solar co MNI Joha	llector ri, IA Zaka	vestigation of aria, NA Yahaya RGANIZING CO		the cooling n	nedium in the	e evacuated to	ubes		2019
	Sensitiz	ed Sola A Yahaya,	r Cell (DSS) K Hamzah	cess and optical C) application/M g (JMechE), 251-26	ÀS Suri[et		n pericarp for	Dye		2018
Ser S Si	nsitized S uri, NA Yah	Solar Ce aya, K Ha	ll (DSSC) ap amzah	and optical propoplication/MAS SechE), 251-260		ngosteen pe	ricarp for Dye			2018
silio	tical desig con solar 3 Yahaya		optimization	of periodic nanc	ohole structui	e for light tra	pping in thin f	īlm		2013
pos R Ja	stgraduate aafar, MAA	e educa yub, Z Ab	onics engine ution in Malay dul Majid, NA Y Institute (RMI)		preneurship	in outcome-b	pased			2007
	he Name AHAYA	of Allah	n Most Graci	ous Most Mercif	ful					1992

Articles 1–11 V SHOW MORE

Cited by

	All	Since 2016
Citations	66	46
h-index	4	3
i10-index	2	2

Co-authors	EDIT

No co-authors